Transport and metabolism of thiamin in isolated rat hepatocytes.

نویسندگان

  • L Lumeng
  • J W Edmondson
  • S Schenker
  • T K Li
چکیده

This study examines thiamin transport in isolated rat hepatocytes and its relationship to thiamin phosphorylation. In an Na+ medium, [35S]thiamin, 3 microM, was accumulated rapidly by the cells, and a near study state intra-/extracellular distribution ratio of 3 was attained in 1 min. However, the uptake of radioactivity continued to increase with time owing principally to the accumulation of [35S]thiamin pyrophosphate (TPP). In a choline, Li+ or K+ medium, the steady state intra-/extracellular distribution ratio of [35S]thiamin was decreased to less than or equal to 1.1. Accordingly, the rate of formation of [35S]TPP also decreased. Ouabain and uncouplers of oxidative phosphorylation significantly lowered the distribution ratio of intra-/extracellular [35S]thiamin. These data indicate that thiamin transport in liver is concentrative, Na+-dependent, and dependent on biological energy. Additionally, they suggest that thiamin transport plays a significant role in governing the rate of synthesis of TPP. Neither pyrithiamin, an inhibitor of thiamin pyrophosphokinase nor o-benzoylthiamin disulfide, a permeable thiamin analog, affected the distribution ratio of intra-/extracellular [35S]thiamin, but preferentially inhibited the phosphorylation of [35S]thiamin. By contrast, amprolium primarily inhibited uptake. These data suggest that thiamin transport and phosphorylation can be differentiated by the action of appropriate inhibitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolism and Cytotoxic Mechanisms of Nitroglycerin in Isolated Rat Hepatocytes

     It has been proposed that organic nitrates such as glyceryl trinitrate (GTN), used in the treatment of cardiovascular diseases, act by producing nitric oxide (NO). However, the biochemical pathway for NO formation from GTN is not well understood. In the present study, we showed that nitrate formation from GTN, by isolated rat hepatocytes, was inhibited about 50% when cellular glutathione w...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species

Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...

متن کامل

Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species

Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 254 15  شماره 

صفحات  -

تاریخ انتشار 1979